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On Condensations in the Bogoliubov Weakly Imperfect
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We show that condensation in the Bogoliubov weakly imperfect Bose gas
(WIBG) may appear in two stages. If interaction is such that the pressure of the
WIBG does not coincide with the pressure of the perfect Bose gas (PBG), then
the WIBG may manifest two kinds of condensations: nonconventional Bose con-
densation in zero mode, due to the interaction (the first stage), and conventional
(generalized) Bose�Einstein condensation in modes next to the zero mode due
to the particle density saturation (the second stage). Otherwise the WIBG
manifests only the latter kind of condensation.

KEY WORDS: Bogoliubov weakly imperfect gas; Bose condenstation;
generalized condensation; conventional; nonconventional.

1. INTRODUCTION AND SETUP OF THE PROBLEM

To fix the notation we recall some facts about the Bogoliubov Weakly
Imperfect Bose Gas. Thus we consider a system of bosons of mass m
enclosed in a cubic box 4=L_L_L/Rd=3 of volume V# |4|=L3. If
the particle interaction is defined by a translation-invariant absolutely
integrable two-body potential .(x) and

v(q)=|
R 3

d 3x .(x) e&iqx, q # R3 (1.1)
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then assuming periodic boundary conditions on �4, the Hamiltonian of the
system acting on the boson Fock space F4 can be written in the second
quantized form as

H4= :
k # 4*

=k ak*ak+
1

2V
:

k1 , k2 , q # 4*

v(q) a*k1+qa*k2&q ak1
ak2

(1.2)

where the sums run over the set

4*={k # R3 : :=1, 2, 3, k:=
2?n:

L
and n:=0, \1, \2,...= (1.3)

Here =k=�2k2�2m is free-particle spectrum, and a*
k =[ak* , ak] are usual

boson creation and annihilation operators in the one-particle state �k(x)=
V &1�2eikx, k # 4*, x # 4. For example, ak*#a*(�k)=�4 dx �k(x) a*(x)
where a*(x) are basic boson operators on the boson Fock space F4 over
L2(4).

Throughout this paper we suppose that:

(A) .(x)=.(&x&) and . # L1(R3);

(B) v(k) is a real continuous function, satisfying v(0)>0 and
0�v(k)�v(0) for k # R3.

If one supposes that the Bose�Einstein condensation, which occurs for
.(x)#0 (Perfect Bose Gas (PBG)) in the mode k=0, persists for a weak
interaction .(x), then according to Bogoliubov(1, 2) the most important
interaction terms in (1.2) should be those which contain at least two zero-
mode operators a*

0 . Thus we come to the following truncated Hamiltonian
(Bogoliubov Hamiltonian for Weakly Imperfect Bose Gas (WIBG), see
refs. 1, 2):

H B
4=T4+U D

4+U4 (1.4)

where

T4= :
k # 4*

=kak*ak (1.5)

U D
4=

v(0)
V

a0*a0 :
k # 4*, k{0

ak*ak+
1

2V
:

k # 4*, k{0

v(k) a0*a0(ak*ak+a*&ka&k)

+
v(0)
2V

a0*
2a2

0 (1.6)

U4=
1

2V
:

k # 4*, k{0

v(k)(ak*a*&ka2
0+a0*

2aka&k) (1.7)

1298 Bru and Zagrebnov



The Hamiltonian was aimed to extract the Landau gapless spectrum of excita-
tions which implies the well-known microscopic theory of superfluidity.(1, 2)

To realize this program Bogoliubov proposed the approximation:
a*

0 �- V � c*, reducing the Hamiltonian (1.4) to a bilinear form, which
can be diagonalized to give this spectrum explicitly, see Appendix A.

Therefore, to verify this concept one has to study the WIBG refraining
from the Bogoliubov approximation. The first rigorous result in this direc-
tion(3) shows that thermodynamic properties of the WIBG are different
from predictions of the Bogoliubov theory. Exact solution(4, 5) of the model
(1.4) proves that the Bogoliubov approximation a*

0 �- V � c* in (1.4)
eliminates quantum fluctuations of operators a*

0 �- V . In fact it is impor-
tant to retain these fluctuations since they are a cause of effective attraction
between bosons in the mode k=0, see ref. 6. In contrast to standard (we
call it conventional ) Bose�Einstein condensation in the PBG (which is due
to saturation of the grand-canonical particle density when the chemical
potential +Z0 for d�3), it is this effective attraction which is now respon-
sible for accumulation of a macroscopic number of bosons in the zero-
mode. We call it nonconventional (Bose) condensation, see Appendix B for
classification of different Bose condensations. In refs. 4, 5 we pointed out
sufficient and necessary conditions on the potential (1.1) which imply the
nonconventional condensation in the WIBG. For reader's convenience, we
resume below the thermodynamic properties of the WIBG.

Papers(4, 5) show that the pressure of the Bogoliubov WIBG can be
calculated exactly in the thermodynamic limit:

Proposition 1.1. The pressure pB
4(;, +) associated with the

Bogoliubov Hamiltonian H B
4 , i.e.,

pB
4(;, +)#p4[H B

4]#
1

;V
ln TrF4

e&;(H B
4&+N4) (1.8)

is defined only in domain Q=[+�0]_[%�0] and it is equal (in the
thermodynamic limit) to

pB(;, +)=sup
c # C

p~ B(;, +; c*)#lim
4

[sup
c # C

p~ B
4(;, +; c*)] (1.9)

with p~ B
4(;, +; c*) defined by (A.4) in Appendix A, c*=(c or c� ). Here

N4= :
k # 4*

Nk# :
k # 4*

ak*ak
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is the particle-number operator, + and %=;&1 are respectively chemical
potential and temperature of the system in the grand-canonical ensemble.

Corollary 1.2. Let v(k) satisfy (A), (B) and

v(0)�
1

2(2?)3 |
R3

d 3k
v(k)2

=k
(1.10)

Then

pB(;, +)=sup
c # C

p~ B(;, +; c*)= p~ B(;, +; 0)= pP(;, +) (1.11)

where

pP(;, +)#lim
4

p4[T4]

is the grand-canonical pressure of the PBG.

Corollary 1.3. Let v(k) satisfy (A), (B) and (C):

v(0)<
1

2(2?)3 |
R3

d 3k
v(k)2

=k
(1.12)

Then there are +0<0 and %0(+)>0 such that one has

pB(;, +)=sup
c # C

p~ B(;, +; c*)= p~ B(;, +; ĉ*(%, +){0)>pP(;, +) (1.13)

for (%, +) # D defined by

D=[(%, +) : +0<+�0, 0�%<%0(+)] (1.14)

and

pB(;, +)=sup
c # C

p~ B(;, +; c*)= pP(;, +) (1.15)

for (%, +) � D� .

Remark 1.4. Notice that the condition (C) is trivially implemented
for low dimensions d=1, 2.

The inequality (1.13) gives access to analysis of the macroscopic occu-
pation of the zero-mode which is exclusively due to the WIBG interaction.
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Proposition 1.5. D is a domain which corresponds to noncon-
ventional condensation in the mode k=0:

\B
0 (%, +)#lim

4 �a0*a0

V �H B
4

(;, +)

={ |ĉ(%, +)| 2>0, (%, +) # D
0, (%, +) # Q"D� = (1.16)

Here ĉ(%, +) is defined by (1.13) and

|B
4(&)#(&)H B

4
(;, +) (1.17)

represents the grand-canonical Gibbs state for the Hamiltonian H B
4 . We

showed that the nonconventional Bose-condensate (1.16) undergoes a jump
on the boundary �D, see ref. 4, 5 and Fig. 1.

However, we have to admit that in refs. 4, 5 we studied the WIBG
only in the grand-canonical ensemble, i.e., by fixing the chemical potential
+ and the temperature %=;&1. On the other hand, it is well-known that
the conventional Bose�Einstein condensation appears only due to the
Bose-statistics and saturation of the particle density when +Z0 (Appendix B).
For example, the PBG condensate density \P

0 (%) is parameterized by
total particle density \ which should be higher than the critical particle
density \P

c (%)#\P (%, +=0), corresponding to the saturation at +=0:

Fig. 1. Illustration of the nonconventional condensate density \B
0 (%, +) as a function of the

chemical potential + and the temperature % for the model H B
4 .
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\P
0 (%)#\&\P

c (%). Here \P(%, +) is the total particle density of the PBG in
the grand-canonical ensemble.

Thus the aim of the present paper is to study thermodynamic proper-
ties of the WIBG and conventional Bose�Einstein condensation as a func-
tion of the total particle density \. In particular, we show that similar to
the PBG there is a critical particle density \B

c (%) such that for densities
\>\B

c (%) there exists a conventional Bose condensation \~ B
0 (%)=\&\B

c (%).
It has nothing to do with the nonconventional Bose condensation: if %�
%0(0) this conventional condensation appears after the nonconventional one
(1.16), see Fig. 1. This main statements is formulated in the next Section 2.
Since the conventional Bose�Einstein condensation could be of different
types (see Appendix B), we make there also its classification. In Section 3
we study the Bogoliubov approximation for the state |̂B

4 a� la Ginibre.(7)

This allows to compare it (in the infinite volume limit) with the corre-
sponding limit of the state |B

4 (1.17). Section 4 summarizes the results and
contains additional remarks. Some definitions and technical statements are
formulated in Appendices A�E.

2. CONVENTIONAL BOSE�EINSTEIN CONDENSATION
IN THE WIBG

First we establish that (similar to the PBG) the particle density
\B(%, +) of the WIBG is saturated when +Z0, i.e., there exists a critical
particle density \B

c (%)=lim+ � 0& \B(%, +). Indeed, using the Griffiths
Lemma (see refs. 8, 9 or Appendix C) and the Propositions 1.1 and 1.5, one
finds for the grand-canonical total particle density in the WIBG:

\B(%, +)#lim
4

|B
4 \N4

V +=lim
4

1
V

:
k # 4*

|B
4(Nk)

=lim
4

�+ pB
4(;, +)=�+ p~ B(;, +; 0)

=
1

(2?)3 |
R 3

(e ;(=k&+)&1)&1 d 3k (2.1)

for (%, +<0) # Q"D� , whereas for (%, +<0) # D one has:

\B(%, +)=�+ p~ B(;, +; ĉ*(%, +){0)

=
1

(2?)3 |
R3 _ fk

Ek
(e ;Ek&1)&1+

h2
k

2Ek( fk+Ek)&c= ĉ(%, +)

d 3k

+|ĉ(%, +)|2 (2.2)

1302 Bru and Zagrebnov



Then, from (2.1) and (2.2), we see that the total particle density \B(%, +)
reaches its maximal (critical) value \B

c (%)#\B(%, +=0) at +=0:

(i) for %>%0 (+=0) one gets

\B
c (%)=

1
(2?)3 |

R3
(e ;=k&1)&1 d 3k=\P

c (%)<+� (2.3)

(ii) for %<%0 (+=0) one has

\B
c (%)=

1
(2?)3 |

R 3 _ fk

Ek
(e ;Ek&1)&1+

h2
k

2Ek( fk+Ek)&c=ĉ(%, 0), +=0

d 3k

+|ĉ(%, +=0)|2<+� (2.4)

by virtue of the estimate |ĉ(%, +=0)|2�const, see ref. 5. By convexity of
pB(;, +) with respect to +, one gets that the function \B(%, +) is monoto-
nous and

lim
+ � +0(%)&

\B(%, +)#\B
inf (%)< lim

+ � +0(%)+
\B(%, +)#\B

sup(%) (2.5)

where +0(%) is the inverse function of %0(+), see (1.14), and

lim
% � %0(0)+

\B
c (%)< lim

% � %0(0)&
\B

c (%) (2.6)

The total density \B(%, +) is illustrated by Fig. 2.
Now we study the WIBG for temperatures and total particle densities

as given parameters. By Lemma D.1 of Appendix D, there exists =4, 1>0
such that for +<=4, 1<=&k&=2?�L ,

|B
4 \N4

V +<+�

although

lim
+ � =4, 1

|B
4 \N4

V +=+� (2.7)

Therefore, for any \>0, there is a unique value of the chemical potential
+B

4(%, \)<=4, 1 such that

�N4

V �H B
4

(;, +B
4(%, \))=|B

4 \N4

V +=\ (2.8)

1303Condensations in the Bogoliubov WIBG



File: 822J 254708 . By:XX . Date:16:06:00 . Time:10:39 LOP8M. V8.B. Page 01:01
Codes: 1542 Signs: 871 . Length: 44 pic 2 pts, 186 mm

Fig. 2. Illustration of the total particle density as a function of the chemical potential + for
the model H B

4 at fixed temperature %=;&1: (a) if %>%0(0): the graph of \B(%, +)=\P(%, +),
where \P

c (%) is the total density for the PBG (notice that \B
c (%)=\P

c (%)#\P(%, 0)); (b) if
%<%0(0): the graph of \B(%, +)�\P(%, +) (notice that in this case \B

c (%)>\P
c (%)).

Notice that for \<\B
c (%) the monotonicity of \B(%, +) for +�0

implies that (2.8) has a unique solution

+B(%, \)=lim
4

+B
4(%, \)<0

independent of the presence of the nonconventional condensation, see (2.1)
and (2.2). Therefore, below the saturation limit \B

c (%) one has at most the
nonconventional condensation (1.16) known from refs. 4, 5. In the rest of
this section we consider the case \�\B

c (%). In general, for any \�\B
c (%),

one gets by (2.7) and (2.8) that +B
4(%, \)y0 and

lim
4

+B
4(%, \�\B

c (%))=0 (2.9)
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From now on we set

|B
4, \(&)#|B

4(&) |+=+B
4(%, \) (2.10)

According to refs. 4, 5 the WIBG nonconventional condensation in
the mode k=0 is saturated for + � 0& either by |ĉ(%, 0)|2>0 (for %<
%0(0)), or by |ĉ(%, 0)|2=0 (for %>%0(0)), see (1.16) and Fig. 1. Therefore,
by (2.1)�(2.4) and Lemma D.1 the saturation of the total particle density
\B(0, +) for + � 0& should imply a conventional Bose condensation in
modes next to k=0 (for discussion of coexistence of these two kinds
of condensations in the framework of simplified models see e.g., recent
papers(10, 11)).

To control the condensation for k{0 we introduce an auxiliary
Hamiltonian

H B
4, :=H B

4&: :
[k # 4*, a<&k&<b]

ak*ak

for 0<a<b. We set

pB
4(;, +, :)#

1
;V

ln TrF4
e&;H B

4, : (+) (2.11)

and

|B, :
4 (&)#(&) H B

4, :
(;, +)

for the grand-canonical Gibbs state corresponding to H B
4, :(+).

Recall that by (1.14) +0(%) is the function (inverse to %0(+)) which
defines a borderline of domain D, see Fig. 1.

Proposition 2.1. Let : # [&$, $] where 0�$�=a �2 and =a=
inf&k&�a=k . Then there exists a domain D$/D:

D$#[(%, +) : +0<+0($)�+�0, 0�%�%0(+, $)<%0(+)] (2.12)

(see Fig. 3) such that

| pB
4(;, +, :)&sup

c # C

p~ B
4(;, +, :; c*)|�

K($)

- V
(2.13)

for V sufficiently large, uniformly in : # [&$, $] and for:

(i) (%, +) # D$ , if +B
4(%, \�\B

c (%))�0

1305Condensations in the Bogoliubov WIBG



File: 822J 254710 . By:XX . Date:16:06:00 . Time:10:39 LOP8M. V8.B. Page 01:01
Codes: 1957 Signs: 896 . Length: 44 pic 2 pts, 186 mm

Fig. 3. Illustration of the domain D$/D.

or

(ii) (%, +) # D$ _ [(%, +) : 0�+�+B
4(%, \�\B

c (%)), 0�%�%0(+=0, $)]
(2.14)

if +B
4(%, \�\B

c (%))�0.

Proof. The existence of the domain D$ follows from the proof of
Theorem 3.14.(5) This means that the estimate (2.13) is stable with respect
to local perturbations of the free-particle spectrum: =k � =k&:/(a, b)(&k&),
for |:|�$�=a�2 in a reduced domain D$/D. Here /(a, b)(&k&) is the
characteristic function of interval (a, b)/R. Extension in (2.14) is due to
continuity of the pressure pB

4(;, +, :) and the trial pressure p~ B
4(;, +, :; c*)

in parameters : # [&$, $] and +�+B
4(%, \�\B

c (%)), see (2.8), (2.9). K

Corollary 2.2. Let \�\B
c (%), see (2.3), (2.4). Then for %<%0(0)

one has

lim
4

1
V

:
[k # 4*, a<&k&<b]

|B
4, \(Nk)

=
1

(2?)3 |
a<&k&<b _

fk

Ek
(e ;Ek&1)&1+

h2
k

2Ek( fk+Ek)&c=ĉ(%, 0), +=0

d 3k

(2.15)

whereas for %>%0(0) one gets

lim
4

1
V

:
[k # 4*, a<&k&<b]

|B
4, \(Nk)=

1
(2?)3 |

a<&k&<b
(e ;=k&1)&1 d 3k (2.16)
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Proof. Consider the sequence of functions [ pB
4(;, +B

4(%, \), :)]4

defined by (2.11), where chemical potential is a solution of (2.8), for the
corresponding Hamiltonian and : # [&$, $]. Since by (2.11)

�: pB
4(;, +B

4(%, \), :)=
1
V

:
[k # 4*, a<&k&<b]

|B, :
4, \(Nk) (2.17)

and [ pB
4(;, +B

4(%, \), :)]4 are convex functions of : # [&$, $], Proposition 2.1
and the Griffiths Lemma (refs. 8, 9 or Appendix C) imply

lim
4

�: pB
4(;, +B

4(%, \), :)=lim
4

1
V

:
[k # 4*, a<&k&<b]

|B, :
4, \(Nk)

=�: lim
4

sup
c # C

p~ B
4(;, +B

4(%, \), :; c*) (2.18)

for : # [&$, $]. By explicit calculations in the right-hand side of (2.18) (see
(A.4)�(A.6)) one obtains for :=0 equalities (2.15) and (2.16). K

Remark 2.3. Notice that the mean particle values |B
4(Nk)=

(Nk) H B
4

(;, +) (and similar |B
4, \(Nk)=(Nk)H B

4
(;, +B

4(%, \))) are defined
on the discrete set 4* (1.3). Below we denote by [|B

4(Nk)]k # R 3 a con-
tinuous interpolation of these values from the set 4* to R3.

Now we are in position to prove the main statement of this section
about the Bose�Einstein condensation showing up in the WIBG for den-
sities \>\B

c (%).

Theorem 2.4. Let \>\B
c (%). Then we have that

(i)

\B
0 (%, 0)=lim

4
|B

4, \ \a0*a0

V +={ |ĉ(%, 0)| 2, %<%0(0)
0, %>%0(0) = (2.19)

(ii) for any k # 4*, such that &k&>2?�L,

lim
4

|B
4, \ \Nk

V +=0 (2.20)

(iii) for %<%0(0) and for all k # 4*, such that &k&>$>0

lim
4

|B
4, \(Nk)=_ fk

Ek
(e ;Ek&1)&1+

h2
k

2Ek( fk+Ek)&c= ĉ(%, 0), +=0

(2.21)
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whereas for %>%0(0)

lim
4

|B
4, \(Nk)=

1
e;=k&1

(2.22)

(iv) the double limit

\B
0 (%)# lim

$ � 0+
lim

4

1
V

:
[k # 4*, 0<&k&�$]

|B
4, \(Nk)=\&\B

c (%) (2.23)

which means that the WIBG manifests a conventional (generalized) Bose
condensation \~ B

0 (%)>0 in modes next to the zero-mode due to particle
density saturation.

Proof. (i) Since by (2.9) we have

lim
4

+B
4(%, \)=0 (2.24)

the thermodynamic limit (2.19) results from Theorem 4.4 and Corollary 4.8
of ref. 5, see (1.16) for +=0.

(ii) Since &k&<2?�L and 4=L_L_L is a cube, which excludes a
generalized Bose�Einstein condensation due to anisotropy (see ref. 12 or
Appendix B), the thermodynamic limit (2.20) follows from +B

4(%, \)<
=&k&=2?�L (Lemma D.1) and the estimate (D.10) of Lemma D.2.

(iii) Let us consider g% (k) defined for k # R3, &k&>$>0 by

g% (k)#lim
4

|B
4, \(Nk) (2.25)

where the state |B
4, \(&) stands for |B

4(&) with +=+B
4(%, \), cf. (2.10).

Notice that by Lemma D.2 and by the fact that (see Lemma D.1)

+B
4(%, \)<=4, 1< inf

k{0
=k==&k&=2?�L

the thermodynamic limit (2.25) exists and it is informly bounded for
&k&>$>0. Moreover, for any interval (a>$, b) we have

lim
4

1
V

:
[k # 4*, &k& # (a, b)]

|B
4, \(Nk)=

1
(2?)3 |

&k&>$
g%(k) /(a, b)(&k&) d 3k
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where again /(a, b)(&k&) is the characteristic function of (a, b). Then
Corollary 2.2 implies that

1
(2?)3 |

&k&>$
g% (k) /(a, b)(&k&) d 3k=

1
(2?)3 |

&k&>$
f% (k) /(a, b)(&k&) d 3k

(2.26)

where f% (k) is a continuous function on k # R3 defined by (2.15), (2.16), i.e.,

f% (k)#
1

(2?)3 _ fk

Ek
(e ;Ek&1)&1+

h2
k

2Ek( fk+Ek)&c= ĉ(%, 0), +=0

(2.27)

for %<%0(0) and

f% (k)#
1

(2?)3 (e ;=k&1)&1 (2.28)

for %>%0(0). Since the relation (2.26) is valid for any interval (a>$, b)/R,
one gets

g% (k)= f% (k), k # R3, &k&>$>0

By this and (2.25)�(2.28) we deduce (2.21) and (2.22).

(iv) Since the total density \ is fixed, by definition (2.10) we have

1
V

:
[k # 4*, 0<&k&�$]

|B
4, \(Nk)=\&|B

4, \ \a0*a0

V +&
1
V

:
[k # 4*, &k&>$]

|B
4, \(Nk)

(2.29)

By Corollary 2.2 for a=$ and b � +� we obtain for %<%0(0)

lim
4

1
V

:
[k # 4*, &k&>$]

|B
4, \(Nk)

=
1

(2?)3 |&k&>$ _
fk

Ek
(e ;Ek&1)&1+

h2
k

2Ek( fk+Ek)& c=ĉ(%, 0), +=0

d 3k

(2.30)

and for %>%0(0)

lim
4

1
V

:
[k # 4*, &k&>$]

|B
4, \(Nk)=

1
(2?)3 |

&k&>$
(e ;=k&1)&1 d 3k (2.31)

Now, from (2.3), (2.4), (2.19), (2.29)�(2.31) we deduce (2.23) by taking the
limit $ � 0+. K
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Therefore, according to (2.23) (and in a close similarity to ref. 11) for
%>%0(0) and \>\B

c (%) the WIBG manifests only one kind of condensation,
namely the conventional Bose�Einstein condensation which occurs in
modes k{0, whereas for %<%0(0) it manifests for \>\B

c (%) this kind of
condensation at the second stage after the nonconventional Bose condensa-
tion |ĉ(%, 0)|2, see (2.19). For classification of different condensations see
Appendix B.

Remark 2.5. In domain: %<%0(0), \>\B
c (%), we have coexistence

of these two kinds of condensations, namely:

�� the nonconventional one, which starts when \ becomes larger than
\B

sup(%), see (2.5) and Fig. 2 (b), and which reaches its maximal value
\B

0 (%, 0) for \�\B
c (%)>\B

sup(%);

�� and the conventional Bose condensation \~ B
0 (%) which appears

when \>\B
c (%), see (2.23).

Since the Bose�Einstein condensation (2.23) occurs in modes k{0, it
should be classified as a generalized condensation. According to the van
den Berg�Lewis�Pule� 's classification (see refs. 12, 13, 14 and Appendix B),
from (2.20) and (2.23) we can deduce only that the generalized conventional
condensation in the WIBG can be either a condensation of type I in modes
&k&=2?�L, or a condensation of type III if modes &k&�2?�L are not
macroscopically occupied (non-extensive condensation), or finally it can be
a combination of the both.

Corollary 2.6. For \>\B
c (%) and periodic boundary conditions

(1.3) the (generalized) conventional condensation (2.23) is of type I in the
first 2d(=6) modes next to the zero-mode k=0, i.e.

\~ B
0 (%)=lim

4

1
V

:
[k # 4*, &k&=2?�L]

|B
4, \(ak*ak)=\&\B

c (%) (2.32)

Proof. Since for $>0

1
V

:
[k # 4*, &k&=2?�L]

|B
4, \(Nk)

=\&|B
4, \ \a0*a0

V +&
1
V

:
[k # 4*, 2?�L<&k&<$]

|B
4, \(Nk)

&
1
V

:
[k # 4*, &k&�$]

|B
4, \(Nk)
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by Lemma D.2 we get

1
V

:
[k # 4*, &k&=2?�L]

|B
4, \(Nk)

�\&
1
V

:
[k # 4*, 2?�L<&k&<$]

1

eBk(+ B
4(%, \))&1

&|B
4, \ \a0*a0

V + _1+
;

2V
:

[k # 4*, 2?�L<&k&<$]

v(k)

1&e&Bk(+B
4(%, \))&

&
1
V

:
[k # 4*, &k&�$]

|B
4, \(Nk) (2.33)

with Bk(+B
4(%, \)) defined by (D.11). Since by Lemma D.1 one has

+B
4(%, \)<=4, 1< inf

k{0
=k==&k&=2?�L

from (2.3), (2.4) and (2.30) we deduce that

lim
4

1
V

:
[k # 4*, &k&=2?�L]

|B
4, \(ak*ak)�\&\B

c (%) (2.34)

by taking the limit $ � 0+ in the right-hand side of (2.33) after the thermo-
dynamic limit. Hence combining the inequality

lim
4

1
V

:
[k # 4*, &k&=2?�L]

|B
4, \(Nk)�lim

4

1
V

:
[k # 4*, 0<&k&<$]

|B
4, \(Nk)

with (2.23) and (2.34), we obtain (2.32). K

Therefore, for temperature % and total particle density \ as param-
eters, we obtain three regimes in thermodynamic behaviour of the WIBG
when %<%0(0) (see Figs. 1 and 2):

(i) for \�\B
inf (%), there is no condensation;

(ii) for \B
sup(%)�\�\B

c (%), there is a nonconventional condensation
(1.16) in the mode k=0 due to nondiagonal interaction in the Bogoliubov
Hamiltonian, see Fig. 1;

(iii) for \B
c (%)�\, there is a second kind of condensation: the conven-

tional type I Bose�Einstein condensation which occurs after the noncon-
ventional one; it appears due to the standard mechanism of the total
particle density saturation (Corollary 2.6).
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When %>%0(0), there are only two types of thermodynamic behaviour:
they correspond to \�\B

c (%) with no condensation and to \B
c (%)<\ with

a conventional condensation as in (iii). Hence, for %>%0(0) the condensa-
tion in the WIBG coincides with type I generalized Bose�Einstein conden-
sation in the PBG with excluded mode k=0, see Theorem 2.4 (iii) and
ref. 15.

3. APPROXIMATING STATE FOR THE WIBG

By definition of the coherent states (A.2) in the zero-mode of the
boson Fock space F4 and by (1.8) one gets

pB
4(;, +)=

1
;V

ln
1

2? |
C

dc dc� TrF$4
W4(c*)#

1
;V

ln
1

2? |
C

dc dc� e ;Vp B
4(;, +; c*)

Here W4(c*) results from the Bogoliubov approximation (see Appendix A)
for the statistical operator W4

W4=e&;(H B
4&+N4)

and pB
4(;, +; c*) is the pressure defined by the partial trace:

pB
4(;, +; c*)#

1
;V

ln TrF$4
W4(c*)

On the other hand, one can also define the pressure p̂B
4(;, +) corresponding

to the Bogoliubov approximation in Hamiltonian H B
4 (cf. (A.3), (A.4)) by

p̂B
4(;, +)#

1
;V

ln
1

2? |
C

dc dc� TrF$4
e&;HB

4(c*, +)

=
1

;V
ln

1
2? |

C

dc dc� e ;Vp~ B
4(;, +; c*) (3.1)

The difference is that pB
4(;, +) results from the integration over the complex

plane of the trace of Bogoliubov approximation for the statistical operator
whereas for the pressure p̂B

4(;, +) the Bogoliubov approximation is done
directly in the Bogoliubov Hamiltonian.

The aim of this section is to construct and to study the approximating
state |̂B

4(&) corresponding to the pressure p̂B
4(;, +) (3.1) in order to

understand how it is related to the Gibbs state |B
4(&) (1.17).
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First, by standard large deviation arguments (see e.g., refs. 16, 17), one
can prove that for any +�0

p̂B(;, +)#lim
4

p̂B
4(;, +)=sup

c # C

p~ B(;, +; c*)= pB(;, +) (3.2)

see Lemma E.1 in Appendix E. This result a� la Ginibre(7) is known for the
superstable Bose gas. Next, the grand-canonical Gibbs state for the WIBG
(1.17)

|B
4(&)=e ;VpB

4(;, +)TrF4
[(&) e&;(H B

4&+N4)]

is defined on the operator C*-algebra A4 living on the boson Fock space F4 .
The tensor structure F4rF04 �F$4 (A.1) implies that A4rA04�A$4
where A04 and A$4 are C*-algebras on the boson Fock spaces F04 and F$4
respectively. Therefore, we are looking for a trial approximating state |̂B

4

as a convex combination of product states on A04�A$4 :

|̂B
4=|

D&

d&(*) '4, *�|4, * (3.3)

Here '4, * , |4, * , * # D& , are two families of states on A04 and on A$4
respectively and the probability measure d&(*) has support D& .

Remark 3.1. The form of the approximating state |̂B
4 (3.3), defined

here as an ``ansatz,'' can be understood with a help of ref. 18 and refs. 19, 20.
Indeed, Sto% rmer(18) proved a theorem on the integral decomposition of
symmetric states of an infinite tensor product of C*-algebra }+�

j=1 Bj . The
Fannes�Lewis�Verbeure theorem(19) extends this result to symmetric states
on a composite algebra A0� (}+�

j=1 Bj ). In our case the state |B
4 is

defined on infinite tensor product for the lattice 4* (1.3). Since

|B
4(Nk1

){|B
4(Nk2

), k1{k2

this state is not symmetric. Hence one has to consider (3.3) as an ansatz.

Definition 3.2. We define the approximating state |̂B
4 correspond-

ing to the pressure p̂B
4(;, +) (3.1) by

|̂B
4(X=X0 �X1)#|

C

K+
4(dc dc� ) '4, c(X0)�|4, c(X1) (3.4)
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where X0 # A04 , X1 # A$4 , and K+
4(dc dc� ) is a probability measure on the

complex plane C defined by

K+
4(dc dc� )#

e&;Vp̂ B
4(;, +)

2?
dc dc� TrF$4

e&;HB
4(c*, +) (3.5)

Here '4, c is a (quasi)-free state (21, 22) defined by

'4, c(a0)=c - V

'4, c(a0*a0)='4, c(a0*) '*, c(a0)=|c| 2 V (3.6)

'4, c(a2
0)='4, c(a0) '4, c(a0)=c2V

'4, c(a0*
2)='4, c(a0*) '4, c(a0*)=c� 2V

and |4, c is a K+
4-measurable state on A$4 defined by

|4, c(&)#
TrF$4

[(&) e&;HB
4(c*, +)]

TrF$4
e&;H B

4(c*, +)
(3.7)

Theorem 3.3. For any +<0 such that +{+0(%), we have

lim
4

|̂B
4 \a0*a0

V +=lim
4

|B
4 \a0*a0

V +
and

lim
4

|̂B
4 \N4

V +=lim
4

|B
4 \N4

V +=\B(%, +)

Proof. Since

N4

V
=

a0*a0

V
�I$+I0�

N$4
V

by explicit calculations one gets from (3.4)�(3.7) that

|̂B
4 \N4

V +=|
C

K+
4(dc dc� ) _'4, c \a0*a0

V +�|4, c(I$)+'4, c(I0)�|4, c \N$4
V +&

=|
C

K+
4(dc dc� ) |c| 2+

1
V

:
k # 4*, k{0

|
C

K+
4(dc dc� )

__ fk

Ek
(e;Ek&1)&1+

h2
k

2Ek( fk+Ek)& (3.8)
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for +<0. Then by (2.1) and Lemma E.2 (ii) of Appendix E one obtains

lim
4

|̂B
4 \N4

V +=
1

(2?)3 |
R 3

(e ;(=k&+)&1)&1 d 3k=\B(%, +)

for +<+0(%), whereas by (2.2) and Lemma E.2 (i) we get

lim
4

|̂B
4 \N4

V +=
1

(2?)3 |
R 3 _ fk

Ek
(e ;Ek&1)&1+

h2
k

2Ek( fk+Ek)&c=ĉ(%, +)

d 3k

+|ĉ(%, +)|2=\B(%, +) (3.9)

for +0(%)<+<0. K

Remark 3.4. From (A.5), (E.4) and estimate (E.8), we find that
p̂B

4(;, +) (3.1) is bounded only for +< =̂4, 1#infk{0 =k . Since by convexity
with respect to + one has for 0<+< =̂4, 1 :

p̂B
4(;, +)& p̂B

4(;, 0)
+

��+ p̂B
4(;, +)=|̂B

4 \N4

V +
where the last equality is due to definitions (3.1), (3.4) and (3.8), then

lim
+ � =̂4, 1

|̂B
4 \N4

V +=+� (3.10)

Therefore, if \�\B
c (%) there is a unique +̂B

4(%, \)< =̂4, 1 such that

|̂B
4 \N4

V +=\

and

lim
4

+̂B
4(%, \�\B

c (%))=0 (3.11)

Below we put (cf. (2.10))

|̂B
4, \(&)#|̂B

4(&) |+=+̂B
4(%, \) (3.12)
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Theorem 3.5. If \�\B
c (%), where \B

c (%) is the critical density
defined by (2.3), (2.4), then we have

\̂B
0 (%)#lim

4

1
V

:
[k # 4*, &k&=2?�L]

|̂B
4, \(ak*ak)=\&\B

c (%) (3.13)

Proof. Notice that

:
[k # 4* : &k&=2?�L]

|̂B
4, \(Nk)

=|̂B
4, \(N4)&|̂B

4, \(a0*a0)& :
[k # 4*, &k&>2?�L]

|̂B
4, \(Nk) (3.14)

and

:
[k # 4*, &k&>2?�L]

|̂B
4, \(Nk)

= :
[k # 4*, &k&�$]

|̂B
4, \(Nk)+ :

[k # 4*, 2?�L<&k&<$]

|̂B
4, \(Nk) (3.15)

where $<0. Since by (3.4)�(3.7)

:
[k # 4*, &k&�$]

|̂B
4, \(Nk)

= :
[k # 4*, &k&�$]

|
C

K +̂ B
4(%, \)

4 (dc dc� ) _ fk

Ek
(e ;Ek&1)&1+

h2
k

2Ek( fk+Ek)&
then by (3.11) and Lemma E.2 we obtain that for %<%0(0)

lim
$ � 0+

lim
4

1
V

:
[k # 4*, &k&�$]

|̂B
4, \(Nk)

=
1

(2?)3 |
R3 _ fk

Ek
(e ;Ek&1)&1+

h2
k

2Ek( fk+Ek)& c=ĉ(%, 0), +=0

d 3k

whereas for %>%0(0)

lim
$ � 0+

lim
4

1
V

:
[k # 4*, &k&�$]

|̂B
4, \(Nk)=

1
(2?)3 |

R3
(e ;=k&1)&1 d 3k
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Hence, from (1.16), (2.3) and (2.4) we get

lim
$ � 0+

lim
4

1
V

:
[k # 4*, &k&�$]

|̂B
4, \(Nk)=\B

c (%)&\B
0 (%, 0) (3.16)

for any %�0. The second term in the right-hand side of (3.15) can be
rewritten as

:
[k # 4*, 2?�L<&k&<$]

|̂B
4, \(Nk)

= :
[k # 4*, 2?�L<&k&<$]

|
C

K +̂ B
4(%, \)

4 (dc dc� )

__ fk

Ek
(e ;Ek&1)&1+

h2
k

2Ek( fk+Ek)&
= :

[k # 4*, 2?�L<&k&<$]
|

=

0
K� +̂ B

4(%, \)
4 (dx) Gk(x, +)

+ :
[k # 4*, 2?�L<&k&<$]

|
+�

=
K� +̂B

4(%, \)
4 (dx) Gk(x, +) (3.17)

for some =>0, with

K� +
4(dx)=e ;V[ p~ B

4(+, x)& p̂B
4(;, +)]dx (3.18)

and

Gk(x, +)=
fk

Ek
(e ;Ek&1)&1+

h2
k

2Ek( fk+Ek)
(3.19)

If =<|ĉ(%, 0)|2, then by Lemma E.2 one gets

lim
4

1
V

:
[k # 4* : 2?�L<&k&<$]

|
+�

=
K� +̂ B

4(%, \)
4 (dx) Gk(x, +̂B

4(%, \))

=
1

(2?)3 |
&k&<$

Gk(x̂(%, 0), 0) d 3k

where x̂(%, 0)=|ĉ(%, 0)|2 and thus by (3.19) we have

lim
$ � 0+

lim
4

1
V

:
[k # 4*, 2?�L<&k&<$]

|
+�

=
K� +̂ B

4(%, \)
4 (dx) Gk(x, +̂B

4(%, \))=0

(3.20)
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By continuity of Gk(x, +), one obtains that for 2?�L<&k&<$

|
=

0
K� +̂ B

4(%, \)
4 (dx) Gk(x, +̂B

4(%, \))�[ sup
x # [0, =]

Gk(x, =̂*, 1)] |
=

0
K� +̂ B

4(%, \)
4 (dx)

(3.21)

Since by (3.19) the function

G� (k)# sup
x # [0, =]

Gk(x, =̂4, 1)

is integrable over k, then combining the Lebesgue dominate convergence
theorem with Lemma E.2 we deduce from (3.21) that

lim
$ � 0+

lim
4

:
[k # 4*, 2?�L<&k&<$]

|
=

0
K� +̂B

4(%, \)
4 (dx) Gk(x, +̂B

4(%, \))=0 (3.22)

Therefore, by the representation (3.17) and by the thermodynamic limits
(3.20) and (3.22) one gets

lim
$ � 0+

lim
4

1
V

:
[k # 4*, 2?�L<&k&<$]

|̂B
4, \(Nk)=0 (3.23)

which together with (3.15) and (3.16) implies

lim
4

1
V

:
[k # 4*, &k&>2?�L]

|̂B
4, \(Nk)=\B

c (%)&\B
0 (%, 0) (3.24)

Since by (1.16), (3.4)�(3.7) and Lemma E.2 one gets

lim
4

|̂B
4, \ \a0*a0

V +=\B
0 (%, 0)

from (3.14) and (3.24) we finally obtain (3.13). K

Summarizing Theorems 3.3 and 3.5 we conclude that for a fixed total
particle density \ the approximating state |̂B

4 gives for the density \̂B
0 (%) of

condensate the same expression (3.13) as the state |B
4 , cf. (2.32). The

remarks (i)�(iii) formulated at the end of Section 2 are also valid in this
case.

A new observation concerns the properties of the approximating state
|̂B

4 for

\B
inf (%)<\<\B

sup(%)�\B
c (%)
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see Fig. 2 and (2.5), i.e., for the line of first-order phase transitions

lim
4

+̂B
4(%, \)=+0(%)

Indeed, Lemma E.3 suggests a possibility of a mixture of two states: a state
without condensation and a state with condensation in the mode k=0.

Theorem 3.6. Let # # R. Then for +=+4 , where

+4#+0(%)+
#

;V
(3.25)

one gets

lim
4

|̂B
4 \a0*a0

V +=(1&*#) |ĉ(%, +0(%))| 2 (3.26)

and

lim
4

|̂B
4 \N4

V +=*#\B
inf (%)+(1&*#) \B

sup(%) (3.27)

with

0�*##
e#\B

inf (%)

e#\B
inf (%)+e#\B

sup(%)
�1 (3.28)

see (E.17).

Proof. By virtue of (3.8), the proof of this theorem follows directly
from Lemma E.3. K

In particular, for the case #=#4=\V ', '<1, we get from (3.28):

lim
#4 � +�

*#4
=0

lim
#4 � &�

*#4
=1

Therefore, we can scan the whole interval 0�*#�1 with # # R. The
mixture of the two states in (3.26), (3.27) is in fact a direct consequence of
the non-convexity of the trial pressure p~ B

4(+, x), see (E.5).
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4. CONCLUDING REMARKS

In other papers(4, 5) we discussed the existence of a nonconventional
condensation of bosons for k=0 for negative + and %<%0(0) in the WIBG,
see Fig. 1. The physical reason of this phenomenon is an effective attraction
between bosons in the mode k=0:(6)

&{ 1
V 2 :

k # 4*, k{0

[v(k)]2

4=k = a0*
2 a2

0 (4.1)

which has to dominate the direct repulsion in (1.6):

v(0)
2V

a0*
2 a2

0

This is formalized in the condition (C) (1.12).
In the present paper we show that conventional Bose�Einstein con-

densation is also possible in the WIBG. It is a generalized Bose�Einstein
condensation of type I in modes &k&=2?�L. This second kind of conden-
sation appears when \�\B

c (%) in accordance with a standard mechanism
of the particle density saturation, which is well-known for the PBG, see
Corollary 2.6.

Therefore, combining refs. 4, 5 with results of Section 2 for %<%0(0)
(see Figs. 1 and 2) we obtain three types of thermodynamic behaviour for
the WIBG (d=3):

(i) for \�\B
inf (%), there is no condensation;

(ii) for \B
sup(%)�\�\B

c (%), a nonconventional condensation (1.16)
appears in the mode k=0, see Fig. 1;

(iii) for \B
c (%)�\, the WIBG manifests a conventional Bose�Einstein

condensation of type I (Corollary 2.6) simultaneously with nonconventional
one. Therefore, two kinds of condensations coexist.

Notice that for %>%0(0) the thermodynamic behaviour of the WIBG
coincides with that of the PBG with excluded mode k=0. Therefore, it
manifests only the Bose�Einstein condensation of type I, see (iii) in
Theorem 2.4 and ref. 15.

For %<%0(0), the thermodynamic behaviour of the WIBG is related to
the two recent models(11) defined respectively by Hamiltonians

H 0
4#T4+U 0

4 (4.2)
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and

H 1
4=H 0

4+U4 (4.3)

where

T4= :
k # 4*"[0]

=kak*ak , =k{0=�2k2�2m

U 0
4==0a0*a0+

g0

V
a0*a0*a0 a0 , =0 # R1, g0>0 (4.4)

U4=
1
V

:
k # 4*, k{0

gk(V ) ak*ak*akak

with 0<gk(V )�#k V :k for k # 4*"[0], :k�:+<1 and 0<#k�#+ .
Notice that in these models, =0 # R1 is not equal to =&k&=0=0. The paper(11)

shows a possibility of coexistence of two kinds of Bose condensations in the
both models (4.2) and (4.3). The behaviour of the WIBG for %<%0(0) is
closer to the model (4.2) than to (4.3) in the sense that the Bose gas (4.2)
manifests the same three types of thermodynamic behaviour (i)�(iii) as
above. The difference is in the absence of the limiting temperature %0(0)
and of discontinuity of the condensate and the total particle density as
functions of +. The peculiarity of the model (4.3) is that under conditions
gk{0(V )�g&>0 or inf&k&<$0 , V gk(V )>0 in a band $0>0, the repulsion
U4 (4.4) spreads out the conventional Bose�Einstein condensation (originally
of type I in modes &k&=2?�L) into Bose�Einstein condensation of type III
(cf. ref. 10, 11). Notice that the conventional Bose condensation persists in the
model (4.3) even if for k # 4*"[0] gk(V )=#kV :k www�V � +� +� (:k�:+

<1) which is similar to the WIBG. There in the effective two-bosons repul-
sion for k, q{0

g4, kqak*a*&ka&q aq

the ``form-factor'' g4, kq>0 diverges with volume as V 2�3, see ref. 6.
However, an important difference is that this effective interaction (which is
due to non-diagonal term (1.7)) is not able to spread out the Bose�Einstein
condensation into the type III as in the model (4.3).

Concerning the thermodynamic behaviour of the WIBG for densities

\B
inf (%)<\<\B

inf (%)

Theorem 3.6 suggests a possibility of a mixture of the two pure approxi-
mating states |̂B(&) corresponding, respectively, to the state without and
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with condensation in mode k=0. This is similar to what is known for the
mean-field Bose gas models.(23, 24) We conjecture the same behaviour of the
state lim |B

4(&).
Comments concerning the dependence of the condensate on dimension

merits a separate remark.

Remark 4.1. By virtue of ref. 5 the nonconventional condensation
\B

0 (%, +)=|ĉ(%, +)| 2 exists and it is uniformly bounded in D. For low
dimensions d=1, 2, it is true for potentials satisfying (A), (B), and for
d=3, 4,..., if in addition, the condition (C) is satisfied, see (1.12). By (2.3)
and (2.4) this implies that for d=1, 2 there is no Bose�Einstein condensa-
tion for %>%0 (+=0) (since \B

c (%)=+� (2.3)), whereas it coexists with
nonconventional condensation for %<%0 (+=0), when \>\B

c (%)<+�
(2.4).

It makes a difference with models (4.2) and (4.3):(11) there for d=1, 2
one has no conventional condensation for all %�0. This difference comes
from the fact that in the WIBG the nonconventional condensation ĉ(%, +)
ensures a convergence of the integral (2.4) for d=1, 2, whereas in models
(4.2) and (4.3) not.

Notice that one of the possibility to correct the instability of the WIBG
for +>0 would be to add to H B

4 (1.4) the ``forward-scattering'' repulsive
interaction between particles next to the mode k=0:

H4=H B
4+

v(0)
2V

:
k, q # 4*"[0]

ak*aq*aqak (4.5)

In paper (3) the superstable Hamiltonian (4.5) was proposed to extract the
Landau gapless spectrum by doing the Bogoliubov approximation only in
the operator H4&v(0) a0*

2a2
0 �2V. In fact the problem of thermodynamics

and of gapless spectrum in the stabilized WIBG models is rather delicate,
see discussions in refs. 3, 25, 26. The reason is that the interaction in the WIBG
is in fact of a long-range, which implies the appearance of the gap when
one has a nonconventional condensation in the zero-mode, see ref. 5. We
return to the model (4.5) elsewhere.

APPENDIX A. THE BOGOLIUBOV APPROXIMATION

A.1. Definition(7)

Let a system of identical bosons be enclosed in a cubic box 4 of the
volume V=|4| with periodic boundary conditions on �4. Let �0(x)=
1�- V be the one-particle constant function corresponding to the mode
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k=0. We denote by F04 the boson Fock spaces constructed on the one-
dimensional Hilbert space H04 spanned by �0 . If F$4 is the Fock space
constructed on the orthogonal complement H=

04 , then the Fock space F4

of the system (i.e., constructed on the L2(4)=H04 �H=
04) is naturally

isomorphic (cf. 27, Ch. II.4) to the tensor product F04�F$4 :

F4rF04 �F$4 (A.1)

For any complex c # C, we can define in F04 a coherent vector

�04(c)=e&V |c|2�2 :
�

k=0

1
k!

(- V c)k (a0*)k 00 (A.2)

where 00 is the vacuum of F4 and therefore a0�04(c)=c - V �04(c).
Using this concept, Ginibre(7) defines the Bogoliubov approximation for a
Hamiltonian H4 in F4 as follows:

Definition A.1. The Bogoliubov approximation H4 (c*, +) for a
Hamiltonian H4(+)#H4&+N4 on F4rF04 �F$4 is the operator defined
on F$4 by its quadratic form

(�$1 , H4(c*, +) �$2)F$4
#(�04(c)��$1 , H4(+) �04(c)��$2)F4

for �04(c)��$1, 2 in the form-domain of H4(+), where c*=(c or c� ).

A.2. Application to the WIBG

Notice that the self-adjoint operator H B
4 is defined on a dense domain in

the boson Fock space F4rF04 �F$4 over L2(4). Then by definition A.1,
the Bogoliubov approximation for the Bogoliubov Hamiltonian (1.4) gets
the form:

H B
4(c*, +)= :

k # 4*, k{0

[=k&++v(0) |c|2] ak*ak

+ 1
2 :

k # 4*, k{0

v(k) |c|2 [ak*ak+a*&k a&k]

+ 1
2 :

k # 4*, k{0

v(k)[c2ak*a*&k+c� 2aka&k]

&+ |c|2 V+ 1
2 v(0) |c|4 V (A.3)
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The Hamiltonian (A.3) can be diagonalized by the Bogoliubov u�v trans-
formation.(1, 2) In contrast to H B

4 the pressure calculated with H B
4(c*, +):

p~ B
4(;, +; c*)=

1
;V

ln TrF$4
e&;H B

4(c*, +) (A.4)

is well-defined instead of +�0 for all +�v(0) |c|2. It has the following
explicit form:

p~ B
4(;, +; c*)=!4(;, +; x)+'4(+; x)

!4(;, +; x)=
1

;V
:

k # 4*, k{0

ln(1&e&;Ek)&1 (A.5)

'4(+; x)=&
1

2V
:

k # 4*, k{0

(Ek& fk)++x&
1
2

v(0) x2

with x=|c|2�0 and

fk==k&++x[v(0)+v(k)]

hk=xv(k) (A.6)

Ek=- f 2
k&h2

k

Notice that the spectrum Ek is gapless if one puts +=v(0) |c| 2>0, (1, 2)

which is out of the stability domain Q=[+�0]_[%�0] for the
Bogoliubov WIBG.

APPENDIX B. CLASSIFICATION OF BOSE CONDENSATIONS

B.1. The van den Berg�Lewis�Pule� Classification
(Condensations of Type I, II and III)

For reader's convenience we remind a nomenclature of (generalized)
Bose condensations according to ref. 12�14:

�� a condensation is called type I when a finite number of single-
particle levels are macroscopically occupied;

�� it is of type II when an infinite number of the levels are macro-
scopically occupied;
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�� it is called type III, or the non-extensive condensation, when no of
the levels are macroscopically occupied whereas one has

lim
$ � 0+

lim
4

1
V

:
[k # 4*, 0�&k&�$]

(Nk)=\&\c(%)

An example of these different condensations is given in ref. 12. This
paper demonstrates that three types of Bose�Einstein condensation can be
realized in the case of the PBG in an anisotropic rectangular box 4/R3

of volume V=|4|=Lx .Ly .Lz and with Dirichlet boundary conditions.
Let Lx=V :x, Ly=V :y, Lz=V :z for :x+:y+:z=1 and :x�:y�:z . If
:z<1�2, then for sufficiently large density \, we have the Bose�Einstein
condensation of type I in the fundamental mode k=(2?�Lx , 2?�Ly , 2?�Lz).
For :z=1�2 one gets a condensation of type II characterized by a macro-
scopic occupation of infinite package of modes k=(2?�Lx , 2?�Ly , 2?n�Lz),
n # N, whereas for :z>1�2 we obtain a condensation of type III. In ref. 28,
29 it was shown that this type III condensation can be caused in the PBG
by a weak external potential or (see ref. 13, 30) by a specific choice of
boundary conditions and geometry. Another example of the non-extensive
condensation is given in ref. 10, 11 for bosons in an isotropic box 4 with
repulsive interactions which spread out the conventional Bose�Einstein con-
densation of type I into Bose�Einstein condensation of type III.

B.2. Nonconventional Versus Conventional Bose
Condensation

Here we classify Bose condensations by their mechanisms of forma-
tion. In the most of papers (cf. refs. 10, 12�14, 28�30), the condensation is
due to a saturation of the total particle density, originally discovered by
Einstein(31) in the Bose gas without interaction (PBG). We call it the
conventional Bose�Einstein condensation.(32)

The existence of a new kind of condensation, which is induced by
interaction, is pointed out in recent papers.(4�6, 11) In particular, this is the
case of the Bogoliubov Weakly Imperfect Bose Gas. We call it the noncon-
ventional Bose condensation.

(i) As it is shown in the present paper (see also ref. 11), the non-
conventional condensation does not exclude the appearance of the Bose�
Einstein condensation when total density of particles grows and exceeds
some saturation limit \B

c (%).

(ii) To appreciate the notion of nonconventional condensation let us
remark that in models (4.2) and (4.3)(11) for d=1, 2, there exists only one

1325Condensations in the Bogoliubov WIBG



kind of condensation, namely the nonconventional. What concerning the
WIBG, see Remark 4.1.

Since the known Bose-systems manifesting condensations are far from
to be perfect, the concept of condensation induced by interaction is rather
natural. For example in a condensate of sodium atoms interaction seems to
predominate compare with kinetic energy.(33) Therefore, condensation in
trapped alkali dilute-gases, (33�35) should be a combination of nonconven-
tional and conventional Bose condensations.

Remark B.1. A nonconventional Bose condensation can always
be characterized by its type. Therefore, formally one obtains six kinds of
condensations: a nonconventional versus conventional of types I, II, or III.

APPENDIX C. THE GRIFFITHS LEMMA(8, 9)

Lemma C.1. Let [ fn(x)]n�1 be a sequence of convex functions on
a compact I/R. If there exists a pointwise limit

lim
n � �

fn(x)= f (x), x # I (C.1)

then

lim
n � �

inf �x fn(x&0)��x f (x&0)
(C.2)

lim
n � �

sup �x fn(x+0)��x f (x+0)

Proof. By convexity one has

�x fn(x+0)�
1
l

[ fn(x+l )& fn(x)]

(C.3)

�x fn(x&0)�
1
l

[ fn(x)& fn(x&l )]

for l>0. Then taking the limit n � � in (C.3), by (C.1) we obtain:

lim
n � �

sup �x fn(x+0)�
1
l

[ f (x+l )& f (x)]

(C.4)

lim
n � �

inf �x fn(x&0)�
1
l

[ f (x)& f (x&l )]

Now taking the limit l � +0, in (C.4), one gets (C.2). K

1326 Bru and Zagrebnov



Remark C.2. In particular, if x0 # I is such that �x fn(x0&0)=
�x fn(x0+0) and �x f (x0&0)=�x f (x0+0), then

lim
n � �

�x fn(x0)=�x f (x0)

APPENDIX D

Lemma D.1. Let the interaction potential (1.1) satisfies (A) and (B).
Then there exists =4, 1 :

=4, 1 # _ inf
k{0 \=k&

v(k)
2V + , =̂4, 1= inf

k{0
=k==&k&=2?�L &

such that for +<=4, 1

pB
4(;, +)<+�

(D.1)
|B

4 \N4

V +<+�

and

lim
+ � =4, 1

pB
4(;, +)=+�

(D.2)

lim
+ � =4, 1

|B
4 \N4

V +=+�

Proof. Since v(k) satisfies (A) and (B), by regrouping terms in (1.6),
(1.7) one gets

H B
4=H� 4+

v(0)
V

a0*a0 :
[k # 4*, k{0]

ak*ak

+
1

2V
:

[k # 4*, k{0]

v(k)(a0*ak+a*&ka0)* (a0*ak+a*&ka0) (D.3)

where

H� 4= :
[k # 4*, k{0] \=k&

v(k)
2V + ak*ak+

v(0)
2V

(a0*a0)2&
1
2

.(0) a0*a0 (D.4)
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Then from (D.3), (D.4) we obtain

H B
4�H� 4 (D.5)

By straightforward calculations one gets

p4[H� 4]=
1

;V
:

k # 4*, k{0

ln[1&e&;[=k&(++(v(k)�2V ))]]&1

+
1

;V
ln :

+�

n0=0

e ;V[(++1�2.(0))(n0 �V )&(v(0)�2V )(n0 �V )2]

which together with (D.5) implies

pB
4(;, +)#p4[H B

4]�p4[H� 4]<+� (D.6)

for +<infk{0(=k&(v(k)�2V )). Since

|B
4 \N4

V +=�+ pB
4(;, +)

by (D.6) and by convexity of the pressure pB
4(;, +) as a function of + we

deduce that

|B
4 \N4

V +<+�

for +<infk{0(=k&(v(k)�2V )). Moreover, by the Peierls�Bogoliubov
inequality (see e.g., refs. 36, 37), one gets:

1
V

(U4) HB
4
�p4[H BD

4 ]& p4[H B
4]�

1
V

(U4)H 4
BD (D.7)

where H BD
4 #T4+U D

4 is a diagonal part of the Bogoliubov Hamiltonian
with T4 and U D

4 defined respectively by (1.5) and (1.6). Since
(U4)H 4

BD=0, we deduce from (D.7) that

pB
4(;, +)�p4[H BD

4 ]

Combining this inequality with the estimate (cf. ref. 5)

p4[H BD
4 ]�

1
;V

:
k # 4*, k{0

ln[(1&e[&;(=k&+)])&1]
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we get

lim
+ � inf =k

k{0

p4[H BD
4 ]=+� (D.8)

Therefore, by (D.6) and (D.8) we find that there exists =4, 1 # [infk{0(=k&
(v(k)�2V )), infk{0 =k] such that pB

4(;, +) and |B
4(N4�V ) are bounded for

+<=4, 1 and

lim
+ � =4, 1

pB
4(;, +)=+� (D.9)

Notice that by convexity of pB
4(;, +) one gets

pB
4(;, +)& pB

4(;, 0)
+

��+ pB
4(;, +)=|B

4 \N4

V +
Then the limit (D.9) implies

lim
+ � =4, 1

|B
4 \N4

V +=+�

which completes the proof of (D.2). K

Lemma D.2. Let &k&>2?�L. Then for the Gibbs state |B
4, \(&) we

have:

|B
4, \(Nk)�

1

eBk(+B
4(%, \))&1

+;
v(k)
2V

|B
4, \(a0*a0)

1&e&Bk(+ B
4(%, \))

(D.10)

with

Bk(+=+B
4(%, \))#; _=k&+B

4(%, \)&
v(k)
2V & (D.11)

Proof. By the Fannes�Verbeure correlation inequalities for the Gibbs
state |B

4(&)#(&) H B
4

(;, +) (see refs. 22, 38, 39):

;|B
4(X*[H B

4(+), X])�|B
4(X*X ) ln

|B
4(X*X )

|B
4(XX*)

(D.12)
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where X is an observable from domain of the commutator [H B
4(+), . ], we

obtain

;|B
4(ak*[H B

4(+), ak])�|B
4(Nk) ln

|B
4(Nk)

|B
4(Nk)+1

(D.13)

for X=ak . Since for &k&>2?�L

[H B
4(+), ak]=&\=k&+&[v(0)+v(k)]

a0*a0

V + ak&
v(k)
V

a2
0a*&k

one gets for +=+B
4(%, \) that

|B
4, \(ak*[H B

4(+B
4(%, \)), ak])= &[=k&+B

4(%, \)] |B
4, \(Nk)

&[v(0)+v(k)]
|B

4, \(a0*a0Nk)

V

&v(k)
|B

4, \(a2
0 ak*a*&k)

V
(D.14)

Notice that |B
4, \(ak*[H B

4(+B
4(%, \)), ak]) # R, then by (D.14) |B

4, \(a2
0ak*a*&k)

# R. Therefore,

2|B
4, \(a2

0ak*a*&k)=|B
4, \(a2

0ak*a*&k)+|B
4, \(ak a&k a0*

2) (D.15)

Moreover, since the functions =k and v(k) are even, we have

|B
4, \(a0*a0Nk)=|B

4, \(a0*a0N&k) (D.16)

Thus (D.14)�(D.16) imply

|B
4, \(ak*[H B

4(+B
4(%, \)), ak])=&[=k&+B

4(%, \)] |B
4, \(ak*ak)

&
v(k)
2V

|B
4, \(a2

0ak*a*&k+a0*
2aka&k)

&
[v(0)+v(k)]

2V
|B

4, \(a0*a0Nk+a0*a0N&k)

(D.17)

Now by identity

a2
0ak*a*&k+a0*

2a&kak+a0*a0ak*ak+a0*a0a*&k a&k

=(a0*ak+a*&ka0)*(a0*ak+a*&ka0)&ak*ak&a0*a0 (D.18)
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we deduce from (D.17) the estimate:

|B
4, ;(ak*[H B

4(+B
4(%, \)), ak])

�&_=k&+B
4(%, \)&

v(k)
2V & |B

4, \(Nk)+
v(k)
2V

|B
4, \(a0*a0) (D.19)

Therefore, combining (D.13) with (D.19) we find:

Bk(+B
4(%, \)) |B

4, \(Nk)&;
v(k)
2V

|B
4, \(a0*a0)�|B

4, \(Nk) ln
|B

4, \(Nk)+1

|B
4, \(Nk)

(D.20)

with Bk(+B
4(%, \)) defined by (D.11). Since

+B
4(%, \)<=4, 1<=&k&=2?�L= inf

k{0
=k

and &k&>2?�L, one has Bk(+B
4(%, \))>0. Hence, to estimate x#|B

4, \(Nk),
we have to solve the inequality

Bk(+B
4(%, \)) x&;

v(k)
2V

|B
4, \(a0*a0)�x ln

x+1
x

(D.21)

for x�0. Notice that the solution of (D.21) is the set [0�x�x1], where
x1 is a solution of the equation

Bk(+B
4(%, \)) x1&;

v(k)
2V

|B
4, \(a0*a0)=x1 ln

x1+1
x1

Let

x2=
1

eBk(+ B
4(%, \))&1

(D.22)

be a nontrivial solution of the equation

Bk(+B
4(%, \)) x=x ln

x+1
x

Then the inequality x�x1 can be rewritten as

x�x2+(x1&x2) (D.23)

1331Condensations in the Bogoliubov WIBG



Since the function f (x)#x ln(1+1�x) defined for x�0 is concave, we have

f (x1)& f (x2)
f $(x2)

�x1&x2

from which by (D.22), (D.23) one gets (D.10) for &k&>2?�L. K

APPENDIX E

Lemma E.1. For any +�0, the pressure p̂B(;, +)#lim4 p̂B
4(;, +),

see (3.2), is given by

p̂B(;, +)=sup
c # C

p~ B(;, +; c*)= pB(;, +) (E.1)

Proof. First we remark that by virtue of (A.5) and (A.6) there is
B1>0 such that

p~ B
4(;, +; c*)�B1& 1

2 v(0) |c|4 (E.2)

Then, the optimal value of |c|2 for supc # C p~ B(;, +; c*) is bounded by a
positive constant M<� which can be chosen in such a way that, for
|c|2�M and V sufficiently large, one has

p~ B
4(;, +; c*)�&B2 |c|2 (E.3)

for some B2>0. We put for short

p~ B
4(+, x)#p~ B

4(;, +; c*) (E.4)

where x=|c|2, see (A.5). Then

p~ B(+, x)#lim
4

p~ B
4(+, x) (E.5)

Therefore, by (E.2) there exists M<� such that

sup
x # R +

p~ B
4(+, x)= sup

x # [0, M]

p~ B
4(+, x)= p~ B

4(+, x̂4<M ) (E.6)

and consequently

sup
x # R +

p~ B(+, x)= p~ B(+, x̂<M ) (E.7)
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with x̂#lim4 x̂4 . Since by (3.1) one has

p̂B
4(;, +)�

1
;V

ln |
M

0
e ;Vp~ B

4(+, x) dx (E.8)

and since by (E.3) we get

p̂B
4(;, +)�

1
;V

ln |
M

0
e ;Vp~ B

4(+, x) dx+
1

;V
ln |

+�

M
e&;VB2x dx (E.9)

the standard large deviation arguments (see e.g., refs. 16, 17) and (E.7)
imply

p̂B(;, +)= sup
x # R +

p~ B(+, x)

Therefore from (A.5), (E.5) and Proposition 1.1 we obtain (E.1). K

Lemma E.2. Let

K� +
4[dx]#e ;V[ p~ B

4(+, x)& p̂B
4(;, +)] dx (E.10)

with p~ B
4(+, x) defined by (E.4). Then:

(i) for +0(%)<+�0 one has

K� +[dx]#lim
4

K� +
4[dx]=$(x&|ĉ(%, +)| 2) dx (E.11)

(ii) whereas for +<+0(%) we get

K� +[dx]#lim
4

K� +
4[dx]=$(x) dx (E.12)

Proof. (i) For +0(%)<+�0, one has

sup
x�0

p~ B
4(+, x)= p~ B

4(+, x̂4)

whereas

sup
x�0

p~ B(+, x)= p~ B(+, x̂)

where

x̂=lim
4

x̂4<M
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For any positive continuous function f (x) defined on R+ and such that

|
+�

0
f (x) e ;Vp~ B

4(+, x) dx<+� (E.13)

we have

|
R +

f (x) K� +
4[dx]=e&;Vp̂B

4(;, +) |
R+

f (x) e ;Vp~ B
4(+, x) dx

Then for each =>0:

|
R +

f (x) K� +
4[dx]=e&;Vp̂B

4(;, +) f (x=) |
x̂+=

x̂&=
e ;Vp~ B

4(+, x) dx

+e&;Vp̂ B
4(;, +) f (x&

= ) |
x̂&=

0
e ;Vp~ B

4(+, x) dx

+e&;Vp̂ B
4(;, +) f (x+

= ) |
M

x̂+=
e ;Vp~ B

4(+, x) dx

+e&;Vp̂ B
4(;, +) |

+�

M
f (x) e ;Vp~ B

4(+, x) dx (E.14)

where x= # [x̂&=, x̂+=], x&
= # [0, x̂&=], and x+

= # [x̂+=, M]. Combining
the standard Laplace large deviation principle(16, 17) and (3.2), we get

lim
4 _ 1

;V
ln |

b

a
e ;Vp~ B4(+, x) dx& p̂B

4(;, +)&= sup
x # (a, b)

p~ B(+, x)& sup
x # R+

p~ B(+, x)

for any a, b # R+ and thus

lim
4 _e&;Vp̂B

4(;, +) |
b

a
e ;Vp~ B4(+, x) dx&=/(a, b)(x=x̂) (E.15)

where /(a, b)(x) is the characteristic function of (a, b). Since by (E.3) one
has

|
+�

M
f (x) e ;Vp~ B4(+, x) dx�|

+�

M
f (x) e&;VB2 x dx

one deduces from (E.14) and (E.15) that

lim
= � 0+

lim
4 |

R+
f (x) K� +

4[dx]= lim
= � 0+

f (x=)= f (x̂)
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The proof of (ii) is the same as for (i) but with a supremum of p~ B(+, x) at
x=0. K

Lemma E.3. For +4=+0(%)+#�;V with # # R we have

lim
4

K� +4
4 [dx]=[*# $(x)+(1&*#) $(x&|ĉ(%, +)|2)] dx (E.16)

where *# is defined by

*##
e#\B

inf (%)

e#\B
inf (%)+e#\B

sup(%)
# [0, 1] (E.17)

Proof. For +=+0(%)�0, the function p~ B
4(+, x) (E.4) has a degenerate

supremum at x̂4>0 and at x=0, which implies that in the thermodynamic
limit

sup
x�0

p~ B(+0(%), x)= p~ B(+0(%), x̂)= p~ B(+0(%), x=0)

where x̂<M. Since

p~ B
4(+4 , x)= p~ B

4(+0(%), x)+
#

;V
�+ p~ B

4(+0(%), x)+O \ 1
V 2+

for any positive continuous function f (x) defined on R+ and satisfying
(E.13) we get

|
R +

f (x) K� +04(%)
4 [dx]=

�R + [ f (x) e# �+ p~ B4(+0(%), x)+O(1�V )] e ;Vp~ B4(+0(%), x) dx

�R + [e# �+ p~ B4(+0(%), x)+O(1�V )] e ;Vp~ B4(+0(%), x) dx
(E.18)

By the Laplace large deviation principle(16, 17) together with Lemma E.1 we
find that

lim
4

e&;Vp̂B
4(;, +0(%)) |

R+
h4(x) e ;Vp~ B4(+0(%), x) dx=h(0)+h(x̂) (E.19)

Here functions

h(x)=lim
4

h4(x)
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are defined on R+ and satisfy (E.13). Since

lim
4

�+ p~ B
4(+4 , 0)=\B

inf (%)

lim
4

�+ p~ B
4(+4 , x̂4)=\B

sup(%)

(cf. (2.5)), by (E.19) for h4(x)= f (x)# �+ p~ B4(+0(%), x)+O(1�V ) (numerator) and
for h4(x)=e# �+ p~ B4(+0(%), x)+O(1�V ) (denominator), the fraction (E.18) implies
(E.16) and (E.17) in the thermodynamic limit. K
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